If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+8X+3=0
a = 1; b = 8; c = +3;
Δ = b2-4ac
Δ = 82-4·1·3
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{13}}{2*1}=\frac{-8-2\sqrt{13}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{13}}{2*1}=\frac{-8+2\sqrt{13}}{2} $
| -5x-48=22 | | x/5-17=-24 | | 3(-2x)=-6x | | 25^7x+22=125 | | 2t-20=16 | | 63=Lx7 | | 20z-18=14z | | 18v-3=17v+2 | | 13v+9=20v-12 | | 11b-3=12b-8 | | 11b-3=12-8 | | 11b-3=12 | | |4u+14|=-6 | | t+20=3t | | z-15=18 | | 9w^2+1=-9w | | 4x-11=x | | y=4(-6)+12 | | 63t^2-29t-4=0 | | -13=9/r+8 | | 9x^2=6x+17 | | -5(1-b)=15 | | X(x-33)=280 | | 7x+40/8=2 | | 18+4.50h=12+5.75 | | a^2+10a=600 | | a^2+10a=20 | | 10x+-15=4x | | 10w^2+3w-7=0 | | 1/4=16x | | w(10w+3)-7=0 | | -2p2=16p+24 |